Hola
Ecuación de Laplace
∂^2U/∂x^2 +∂^2U/∂u^2 +∂^2U/∂z^2 = 0
U(x,y,z)=1/√(x^2+y^2+z^2 )
U = (x^2 + y^2 + z^2)^(-1/2)
∂U/∂x = (-1/2) (x^2 + y^2 + z^2)^(-3/2) ( 2 x)
∂U/∂x = -x (x^2 + y^2 + z^2)^(-3/2)
∂^2U/∂x^2 = -(1) (x^2 + y^2 + z^2)^(-3/2) -
- x (-3/2) (x^2 + y^2 + z^2)^(-5/2) ( 2 x)
∂^2U/∂x^2 = - (x^2 + y^2 + z^2)^(-3/2) -
+ (3 x^2) (x^2 + y^2 + z^2)^(-5/2)
∂^2U/∂x^2 = - (x^2 + y^2 + z^2) (x^2 + y^2 + z^2)^(-5/2) -
+ (3 x^2) (x^2 + y^2 + z^2)^(-5/2)
∂^2U/∂x^2 = (-x^2 - y^2 - z^2 + 3 x^2) (x^2 + y^2 + z^2)^(-5/2)
a) ∂^2U/∂x^2 = (2 x^2 - y^2 - z^2) (x^2 + y^2 + z^2)^(-5/2)
******************
Observamos que U
es función simétrica de x;y;z
y no varía con el intercambio de variables
Deducimos
b) ∂^2U/∂y^2 = (- x^2 + 2 y^2 - z^2) (x^2 + y^2 + z^2)^(-5/2)
c) ∂^2U/∂z^2 = (- x^2 - y^2 + 2 z^2) (x^2 + y^2 + z^2)^(-5/2)
Si sumamos todos
∂^2U/∂x^2 +∂^2U/∂u^2 +∂^2U/∂z^2 =
= (2 x^2 - x^2 - x^2 -
- y^2 + 2 y^2 - y^2 -
- z^2 - z^2 + 2 z^2) * (x^2 + y^2 + z^2)^(-5/2)
Toda esta expresión se anula idénticamente
Concluímos que
el laplaciano de U es cero
∇^2 U = ∂^2U/∂x^2 +∂^2U/∂u^2 +∂^2U/∂z^2 = 0
*********
Saludos